Using Denoisers for Accelerated CMR

Plug-and-play methods for supervised and self-supervised recovery

Rizwan Ahmad, PhD

May 5, 2022

Conflict

- Plug-and-play (PnP) methods for CMR
- Self-calibrated PnP (ReSiDe)
- Summary

Compressed sensing (CS)

pseudo-random Α Cartesian sampling [1,2] cine flow

Gadgetron-based inline reconstruction [3]

[1] Rich and Ahmad et al., MRM 2020, [2] https://github.com/OSU-CMR/GRO-CAVA, [3] http://gadgetron.github.io/, [4] Chen and Ahmad et al., MRM 2019

CMR reconstruction beyond CS [1]

Blind CS

- Lingala and Jacob, IEEE TMI, 2013
- Low-rank approaches
 - Zhao and Liang, IEEE TMI, 2012
 - Liu and Sun et al., MRI, 2019
- Low-rank and sparse approaches
 - Otazo and Sodickson et al., MRM, 2014
 - Miao and Nayak et al., MRI, 2016
- Deep learning
 - Küstner and Prieto et al., Scientific Reports, 2020
 - Hamilton and Seiberlich et al., MRM, 2021

Plug-and-play (PnP) methods

$$\widehat{m{x}} = rgmin_{m{x}} \{ rac{1}{2 au^2} \|m{A}m{x} - m{y}\|_2^2 + \phi(m{x}) \}$$

From CS to PnP

$$\widehat{m{x}} = rgmin_{m{x}} \{ rac{1}{2 au^2} \|m{A}m{x} - m{y}\|_2^2 + \phi(m{x}) \}$$

Algorithm 1 Primal-dual splitting

Require:
$$\nu > 0, \tau, A, y$$

1: $\gamma = \frac{\nu}{\tau^2} ||A||_2^2, x_0 = A^H y, z_0 = A x_0 - y$
2: **for** $t = 1, 2, 3, ...$ **do**
3: $u_t = x_{t-1} - \frac{\nu}{\tau^2} A^H z_{t-1}$
4: $x_t = \arg \min_{x} \left\{ \phi(x) + \frac{1}{2\nu} ||x - u_t||_2^2 \right\}$
5: $v_t = 2x_t - x_{t-1}$
6: $z_t = \frac{\gamma}{1+\gamma} z_{t-1} + \frac{1}{1+\gamma} (A v_t - y)$
7: **end for**
8: **return** $\hat{x} \leftarrow x_t$

Line 4 interpretation: denoising of \boldsymbol{u}_t

Algorithm 2 PnP Primal-dual splitting

Require:
$$\nu > 0, \tau, A, y, f$$

1: $\gamma = \frac{\nu}{\tau^2} \|A\|_2^2, x_0 = A^H y, z_0 = A x_0 - y$
2: for $t = 1, 2, 3, ...$ do
3: $u_t = x_{t-1} - \frac{\nu}{\tau^2} A^H z_{t-1}$
4: $x_t = f(u_t)$
5: $v_t = 2x_t - x_{t-1}$
6: $z_t = \frac{\gamma}{1+\gamma} z_{t-1} + \frac{1}{1+\gamma} (Av_t - y)$
7: end for
8: return $\hat{x} \leftarrow x_t$

$f(\cdot)$: apply any denoiser

PnP with application-specific denoisers

an application-specific, learned denoiser can benefit PnP [1,2]

PnP methods "plug in" a denoiser into the reconstruction [3]

Training independent of the forward model

Highly generalizable

Physics-driven modeling

✓ State-of-the-art performance

Training on image patches

Access to fully sampled k-space data not required

Iterative reconstruction

X Slower than some other deep learning methods

PnP for segmented 2D cine

- Training: DL denoiser trained on 50 fully-sampled, breath-held cine images
- Validation: Nine retrospectively undersampled datasets at R = 6, 8, and 10

PnP for segmented 2D cine

Reference CS-TV L+S CS-UWT PnP-DL 111 111 111 *** 111

validation for the axial slice—the view not included in the training

Liu and Ahmad et al., IEEE ISBI, 2020

PnP for real-time 2D cine

- Training: DL denoiser trained on 50 fully sampled, breath-held cine images
- Validation: Ten prospectively undersampled real-time datasets scored by an expert (1—5)

CS **PnP-DL 1.5T** 3.5 3.9 0.35T

ReSiDe: <u>Re</u>covery with a <u>s</u>elf-cal<u>i</u>brated <u>de</u>noiser

Algorithm 2 PnP Primal-dual splitting

Rec	puire: $ u > 0, au, oldsymbol{A}, oldsymbol{y}, oldsymbol{f}$
1:	$\gamma = rac{ u}{ au^2} \ oldsymbol{A}\ _2^2, oldsymbol{x}_0 = oldsymbol{A}^{H}oldsymbol{y}, oldsymbol{z}_0 = oldsymbol{A}oldsymbol{x}_0 - oldsymbol{y}$
2:	for $t = 1, 2, 3, \dots$ do
3:	$oldsymbol{u}_t = oldsymbol{x}_{t-1} - rac{ u}{ au^2}oldsymbol{A}^{H}oldsymbol{z}_{t-1}$
4:	$oldsymbol{x}_t = oldsymbol{f}(oldsymbol{u}_t)$
5:	$oldsymbol{v}_t = 2oldsymbol{x}_t - oldsymbol{x}_{t-1}$
6:	$oldsymbol{z}_t = rac{\gamma}{1+\gamma}oldsymbol{z}_{t-1} + rac{1}{1+\gamma}(oldsymbol{A}oldsymbol{v}_t - oldsymbol{y})$
7:	end for
8:	return $\widehat{x} \leftarrow x_t$

 $f(\cdot)$: apply any denoiser

Algorithm 3 ReSiDe

Require:
$$\nu > 0, \tau, A, y, f$$

1: $\gamma = \frac{\nu}{\tau^2} ||A||_2^2, x_0 = A^H y, z_0 = A x_0 - y$
2: **for** $t = 1, 2, 3, ...$ **do**
3: $\tilde{x}_{t-1} = x_{t-1} + \mathcal{N}(\mathbf{0}, \sigma_t^2 I)$
4: $\theta_t = \operatorname{argmin}_{\theta} \sum_{i=1}^{P} \mathcal{L}(f(\mathcal{I}[\tilde{x}_{t-1}]_i; \theta), \mathcal{I}[x_{t-1}]_i))$
5: $u_t = x_{t-1} - \frac{\nu}{\tau^2} A^H z_{t-1}$
6: $x_t = f(u_t; \theta_t)$
7: $v_t = 2x_t - x_{t-1}$
8: $z_t = \frac{\gamma}{1+\gamma} z_{t-1} + \frac{1}{1+\gamma} (Av_t - y)$
9: **end for**
10: **return** $\hat{x} \leftarrow x_t$

Line 3: Add noise to x_{t-1}

Line 4: Train a denoiser to remove the added noise

 $f(\cdot; \boldsymbol{\theta}_t)$: apply the self-calibrated denoiser

ReSiDe—brain imaging

- Data: Multi-coil T1/T2-weighted images from fastMRI.org
- Sampling: R=2 and 4, random + ACS, pseudo-random + ACS

ReSiDe—brain imaging

T1	R=2, pseudo-random	R=4, pseudo-random	R=2, random	R=4, random
L1-wavelet	-27.44 / 0.8973	-24.71 / 0.8707	-26.59 / 0.8892	-20.74 / 0.8324
PnP-BM3D	-28.60 / 0.9610	-25.29 / 0.9361	-27.22 / 0.9494	-19.30 / 0.8631
ConvDecoder	-25.74 / 0.9324	-22.89 / 0.9051	-25.82 / 0.9391	-20.22 / 0.8472
ReSiDe	- 28.62 / 0.9580	- 25.97 / 0.9318	- 28.06 / 0.9491	-24.27 / 0.9257

Т2	R=2, pseudo-random	R=4, pseudo-random	R=2, random	R=4, random
L1-wavelet	-29.52 / 0.9683	-23.83 / 0.9375	-26.78 / 0.9558	-22.09 / 0.9286
PnP-BM3D	-28.73 / 0.9573	-24.22 / 0.9414	-27.24 / 0.9548	-23.40 / 0.9370
ConvDecoder	-24.44 / 0.9401	-20.21 / 0.9014	-24.22 / 0.9370	-19.76 / 0.8987
ReSiDe	-30.05 / 0.9684	- 25.18 / 0.9404	-28.35 / 0.9654	-24.55 / 0.9402

ReSiDe—dynamic phantom

- Data: Multi-coil MRXCAT digital phantom [1]
- Sampling: Pseudo-random Cartesian, R=8

reference

ReSiDe—perfusion imaging

- Data: A clinical first-pass perfusion at 1.5T
- Sampling: Rate-2 EPI

GRAPPA

ReSiDe

Connection of other self-calibrated methods

• There is growing literature on training denoisers from imperfect images.

- Noise2Noise
 - Lehtinen and Aila et al., arXiv, 2018
- Noise2Self
 - Batson and Royer, MLR, 2019
- Noise2Void
 - Krull and Jug et al., CVF, 2019
- Noisy-as-clean
 - Xu and Shao et al., IEEE TIP, 2020
- Unsupervised learning with SURE
 - Zhussip and Chun et al., NeurIPS, 2019
 - Metzler and Baraniuk et al., arXiv, 2020
 - Aggarwal and Jacob et al., ICASSP, 2021

- PnP methods can leverage the power of DL by employing applicationspecific learned denoisers
- Many of the existing algorithms developed for CS can be used for PnP
- The denoiser can be trained on image patches
- By training the denoiser from the image that is being recovered, PnP can facilitate self-calibrated imaging

Acknowledgment

Collaborators

- Lee Potter, PhD (OSU)
- Philip Schniter, PhD (OSU)
- Matthew Tong, DO (OSU)
- Karolina Zareba, MD (OSU)
- Yuchi Han, MD (OSU)
- Orlando Simonetti, PhD (OSU)
- Ning Jin, PhD (Siemens)

• Trainees/staff (OSU)

• Chong Chen, Yingmin Liu, Yue Pan, Debbie Scandling, Shen Zhao, Sizhuo Liu, Murtaza Arshad, Matt Bendel, Jeffrey Wen

Research funding

- National Institute of Health—NIBIB, NHLBI
- Siemens Healthineers

